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When colloidal particles are of a density different from the bulk fluid in which they diffuse, prior to
their adhesion to an interface, the movement results from the influence of (i) random (Brownian)
diffusion, (ii) deterministic vertical displacement due to the gravity, and (iii) hard core repulsion between
the particles. It is shown that the mean maximum number of particles that can be deposited either on a
line segment or on a surface, or the so-called jamming coverage 6( « ), depends on a single parameter
(R *) related to the Péclet number. This parameter contains all the physical characteristics of the pro-
cess. When suitably normalized, the values of 6(«,R *) follow a unique function of R * for one- and

two-dimensional collectors.

PACS number(s): 82.70.Dd, 02.50.—r, 68.10.Jy, 82.65.—i

The adhesion of colloidal particles (bacteria, cells, syn-
thetic micrometric particles) to solid substrates, either
natural or artificial, plays an important role in numerous
biological and physical processes. The incidence of
adhesion in such processes has stimulated many experi-
mental and theoretical works aimed at a detailed descrip-
tion of the mechanisms ruling them [1-8]. The random
sequential adsorption (RSA) model has been widely used
to describe this phenomenon, and often serves as a start-
ing point for other models, for particles deposited either
on line segments or on surfaces. In the RSA model it is
assumed that the particles interact through a hard core
potential and that, once adsorbed, they remain per-
manently fixed in place. Thus the phenomenon is sup-
posed to be fully irreversible. Instead of being rejected at
the first collision as in the RSA model, another related
model, developed more recently, is the ballistic deposi-
tion (BD) model. In the latter, the incoming particle can
roll over preadsorbed ones and can eventually reach the
line or the surface if a sufficient area is available. The
rules are otherwise identical to those of the RSA model.

One particular characteristic of the configurations built
up by the particles adsorbed on the collector is the so-
called jamming-limit coverage (o), which represents
the relative length or area occupied by the particles,
when no additional particle can be brought to the collec-
tor. The theoretical evaluation of 6( « ) can only be car-
ried out in (1+ 1)-dimensional [(1+ 1)D] systems (i.e., for
two-dimensional movement, with adsorption on a line),
whereas in (1+2)D systems (i.e., for three-dimensional
movement, with adsorption on a surface) simulation is
the only means to estimate the value of 6( o) [3,9,10].
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However, in experiments, the particles are not
infinitely heavy [11]. Therefore both the Brownian
diffusion in the bulk liquid [12,13] and the deterministic
gravitational force contribute to the resulting trajectory
of a particle [14,15]. The model combining diffusion and
gravity is hereafter referred to as the diffusion RSA with
gravity (DRSAG) model. In the limiting case of zero
gravity, it is called the diffusion RSA (DRSA) model [13].
We present a comparative study of the dependence of
0() on the relative importance of the deterministic
gravitational force compared to the random force respon-
sible for pure Brownian diffusion, in (1+1)D and (1+2)D
systems. In both, the final coverage is shown to depend
on a single variable (R*), including all the pertinent
characteristics implied in the diffusion process. There-
fore we will write 8( «,R *) from now on. Moreover, a
convenient scaling permits the proposition of a “univer-
sal” curve for 6( ,R *).

The movement of spherical particles, of radius R, in
the fluid is governed by the Langevin equation that re-
lates the position r'(¢'+At’) of a particle at time ¢'+ At’
to its position r'(¢’) at time ¢':

DF
(' +Ar)=r'(t')+ kTg At'+Ary , (1)

where D is the Einstein-Stockes diffusion coefficient, k the
Boltzmann constant, and 7 the absolute temperature.
The vector F, represents the gravitational force, i.e., the
only deterministic force acting on the particles assumed
in the present study; it is given by

F,=—47R3Apg2, )
where g represents the acceleration of the gravity, Ap the
difference (supposed to be positive) of specific mass be-
tween the particle material and the liquid, and Z the unit
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vector on the z axis (ascending vertical axis). The vector
Arp represents the random (Brownian) displacement dur-
ing the time interval At¢’. As usual, it is assumed that
each component of the random movement
(Axg,Ayp,Azp) is a normal deviate with mean equal to
zero and standard deviation equal to V'2DAt’. These
components may therefore be written as

Axp=y,V2DAt', Ayp=y,V2DA?',
Az)=y,V3DAT , 3)

where v,, v,, and Y, are normal deviates, with mean
equal to zero and standard deviation equal to 1.
Langevin’s equation, corresponding to a diffusion in a
three-dimensional space, separates into three independent
equations: '

x'(t'+At")=x"(¢')+Axp , (4a)

y'(t'+At")=y'(t')+Ayg , (4b)
A =z"(¢ DFg +Az! 4
z'(t t')=z'(t") T zZp , (4c)

where F, (equal to $7R 3Apg) appears only in the third
component. Applying the transformations x =x’/R,
y=y'/R,z=2z'/R, t =Dt'/R? and using the definitions
(3), lead to three new equations describing the time evolu-
tion of the dimensionless Cartesian coordinates (x,y,z) of
the center of a diffusing particle:

x(t+AD=x(t)+y V2Ar , (5a)
y(t+AD=y()+y,V2Az , (5b)
z(t+At)=z(t)—R**At +y,V2Ar , (5¢)
where
*4 47R 4Aeg
R KT (6)

is a dimensionless parameter that contains all relevant
physical characteristics of the diffusion. R ** can be in-
terpreted as the work of the gravitational force necessary
to change the altitude of the particle by R, expressed in
units of the thermal energy kT (R**=R |Fg | /KT is pro-
portional to the Péclet number). Equations (5a)-—(5c)
clearly demonstrate that the diffusion depends on the
unique parameter R*. Therefore, any quadruplet
(R,Ap,g,T) must lead to the same jamming-limit cover-
age if it corresponds to the same value of R *. This was
already shown in Ref. [15] on the basis of a different ar-
gument. Note that, in the case where the particles diffuse
in a two-dimensional space, the equation giving either x
or y [(5a) or (5b), respectively] is simply eliminated. The
above conclusion concerning the jamming-limit coverage
remains unaltered.

In the simulation presented here, the adsorbing line (or
plane) is at height z =0. Each particle starts from a ran-
dom position at height z =3. When adsorbed, its height
is z=1. If a particle hits another one already adsorbed,
it is drawn back to its previous position and a new move
is tried. This is fundamentally different from the RSA
procedure, where any collision causes the immediate re-
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jection of the particle. The adsorption process was simu-
lated so that the particles adsorb either on square sur-
faces of side ¢ =18 or on line segments of length L =500,
with periodic conditions applied to the boundaries. The
algorithm proceeds up to saturation. Then, if (n,4 ) par-
ticles on average are located on the collector, the
jamming-limit coverage is defined by

(7445 >2§. for a line segment , (7a)

O(o0,R*)= #R?
(naq ) ——— for a surface . (76)
2
c

The estimation of 6( «o,R *) was obtained on the basis
of samples whose size was generally of the order of 50
lines or surfaces. For the smallest values of R *, however,
the process became very slow. Then, the size of the cor-
responding line or surface sample was reduced, with the
consequence that the confidence interval (at 95%) in-
creased accordingly. Moreover, when a particle reached
an upper line (or plane) at height z =35, it was rejected in
order to avoid very long diffusion, and hence computer
time. We have observed that for R * = 1.07 (“light” par-
ticles) in a (1+1)D system, when the rejection line is
raised from z =5 to z =10, @( 0,R *) determined on sam-
ples of 50 lines varies from 0.75374+0.0034 to
0.7565+0.0031. Following the Student test, this
difference is not significant (risk level =5%). Since the
lightest particles are a priori the most sensitive to the
presence of the rejection line (or plane), we conclude that
z =35 is a reasonable choice for all values of R* investi-
gated in this Brief Report, as far as the determination of
the jamming coverage is concerned.

For the (1+1)D as well as for the (1+2)D systems,
6(,R*) increases with R* up to the ballistic limit
[9,10] (see Table I). For R*—0, we previously showed
[13] that in (14-2)D the diffusion leads to a jamming-limit
coverage not significantly different from its RSA counter-
part, i.e., 0.547 [2,3]. In contrast, when the adsorption
occurs on a line, the diffusion gives rise to a value of the
jamming coverage slightly higher than predicted by the
RSA model (0.7529 instead of 0.747 59) [16].

In order to compare more precisely the coverage for
the jammed state in (1+1)D and (1+2)D, it is interesting
to “normalize” the results by transforming 6( »,R *) into
Oy(0,R*) through the relation

6(,R*)—6Opgsal )

Opp( )= 6Oprsal )

Oy(o0,R*)= , (8)

where Oppga( ) and Ogp( 0 ) are the jamming-limit cov-

TABLE 1. Values of the jamming-limit coverage correspond-
ing to the DRSA and the ballistic models [Oprsa( ) and
Opp( ), respectively], for diffusion-adsorption in (1+1)D and
(1+2)D spaces.

Dimension Oprsal ) Opp( o)
1+1 0.7529 0.808 65
1+2 0.547 0.61056
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erages corresponding to the DRSA and the BD models,
respectively (see Table I). The two sets of 6y(o,R*) re-
sulting from relation (8) are shown in Fig. 1. Within sta-
tistical uncertainties, these two groups of 6y(e,R*) fall
on a common curve with an empirical equation:

Oy(o,R*)=exp(—a,R* *—a,R*73), 9)

where ay=~1.32 and a; =3.44 were determined by means
of a least squares method. It may be mentioned that the
determination of @, and a, performed separately on the
two sets of data leads to ay=1.16, a;=3.54, and
ag=1.55, a; =3.30 for the (1+1)D and (1+2)D systems,
respectively. Although the parameters are slightly
different, the resulting fits, if drawn in Fig. 1, are indistin-
guishable from the fit obtained on the basis of all of the
data.

In summary, the jamming-limit coverage for spherical
particles deposited randomly on line segments and sur-
faces has been determined by means of numerical simula-
tions. They were based on a model, taking into account
the Brownian diffusion in the liquid and the gravitational
force, as well as excluded volume effects (DRSAG mod-
el). Somewhat surprisingly, the results obtained in
(14+1)D and (1+2)D, though quantitatively different, can
be made to form a unique curve by a simple scaling pro-

cedure. This set of saturation coverages is accurately

fitted by a simple empirical function of R *. This surpris-
ing and unexplained result should stimulate theoretical
work. The above study shows that the theoretical jam-
ming limits need only be determined for (14 1)D systems,

FIG. 1. Normalized jamming-limit coverage Oy(»,R*) as a
function of the reduced radius R* [see Eq. (6)] obtained by
simulation in (1+1)D (@) and (1+2)D (O) spaces. The error
bars represent 95%-confidence intervals. The solid line is a
least squares fit of an empirical function [see Eq. (9)] to the data.

since a simple scaling law permits conversion to their
(14+2)D counterparts.

The authors are indebted to E. K. Mann for a critical
reading of the manuscript.
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